3.413 \(\int \cot ^2(e+f x) (b (c \tan (e+f x))^n)^p \, dx\)

Optimal. Leaf size=63 \[ -\frac{\cot (e+f x) \text{Hypergeometric2F1}\left (1,\frac{1}{2} (n p-1),\frac{1}{2} (n p+1),-\tan ^2(e+f x)\right ) \left (b (c \tan (e+f x))^n\right )^p}{f (1-n p)} \]

[Out]

-((Cot[e + f*x]*Hypergeometric2F1[1, (-1 + n*p)/2, (1 + n*p)/2, -Tan[e + f*x]^2]*(b*(c*Tan[e + f*x])^n)^p)/(f*
(1 - n*p)))

________________________________________________________________________________________

Rubi [A]  time = 0.109797, antiderivative size = 63, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {3659, 16, 3476, 364} \[ -\frac{\cot (e+f x) \, _2F_1\left (1,\frac{1}{2} (n p-1);\frac{1}{2} (n p+1);-\tan ^2(e+f x)\right ) \left (b (c \tan (e+f x))^n\right )^p}{f (1-n p)} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^2*(b*(c*Tan[e + f*x])^n)^p,x]

[Out]

-((Cot[e + f*x]*Hypergeometric2F1[1, (-1 + n*p)/2, (1 + n*p)/2, -Tan[e + f*x]^2]*(b*(c*Tan[e + f*x])^n)^p)/(f*
(1 - n*p)))

Rule 3659

Int[(u_.)*((b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Dist[(b^IntPart[p]*(b*(c*Tan[e + f*x
])^n)^FracPart[p])/(c*Tan[e + f*x])^(n*FracPart[p]), Int[ActivateTrig[u]*(c*Tan[e + f*x])^(n*p), x], x] /; Fre
eQ[{b, c, e, f, n, p}, x] &&  !IntegerQ[p] &&  !IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, ((d_.)*(trig_)[e + f*x]
)^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \cot ^2(e+f x) \left (b (c \tan (e+f x))^n\right )^p \, dx &=\left ((c \tan (e+f x))^{-n p} \left (b (c \tan (e+f x))^n\right )^p\right ) \int \cot ^2(e+f x) (c \tan (e+f x))^{n p} \, dx\\ &=\left (c^2 (c \tan (e+f x))^{-n p} \left (b (c \tan (e+f x))^n\right )^p\right ) \int (c \tan (e+f x))^{-2+n p} \, dx\\ &=\frac{\left (c^3 (c \tan (e+f x))^{-n p} \left (b (c \tan (e+f x))^n\right )^p\right ) \operatorname{Subst}\left (\int \frac{x^{-2+n p}}{c^2+x^2} \, dx,x,c \tan (e+f x)\right )}{f}\\ &=-\frac{\cot (e+f x) \, _2F_1\left (1,\frac{1}{2} (-1+n p);\frac{1}{2} (1+n p);-\tan ^2(e+f x)\right ) \left (b (c \tan (e+f x))^n\right )^p}{f (1-n p)}\\ \end{align*}

Mathematica [A]  time = 0.0492503, size = 61, normalized size = 0.97 \[ \frac{\cot (e+f x) \text{Hypergeometric2F1}\left (1,\frac{1}{2} (n p-1),\frac{1}{2} (n p+1),-\tan ^2(e+f x)\right ) \left (b (c \tan (e+f x))^n\right )^p}{f (n p-1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^2*(b*(c*Tan[e + f*x])^n)^p,x]

[Out]

(Cot[e + f*x]*Hypergeometric2F1[1, (-1 + n*p)/2, (1 + n*p)/2, -Tan[e + f*x]^2]*(b*(c*Tan[e + f*x])^n)^p)/(f*(-
1 + n*p))

________________________________________________________________________________________

Maple [F]  time = 3.553, size = 0, normalized size = 0. \begin{align*} \int \left ( \cot \left ( fx+e \right ) \right ) ^{2} \left ( b \left ( c\tan \left ( fx+e \right ) \right ) ^{n} \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^2*(b*(c*tan(f*x+e))^n)^p,x)

[Out]

int(cot(f*x+e)^2*(b*(c*tan(f*x+e))^n)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (\left (c \tan \left (f x + e\right )\right )^{n} b\right )^{p} \cot \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(b*(c*tan(f*x+e))^n)^p,x, algorithm="maxima")

[Out]

integrate(((c*tan(f*x + e))^n*b)^p*cot(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\left (\left (c \tan \left (f x + e\right )\right )^{n} b\right )^{p} \cot \left (f x + e\right )^{2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(b*(c*tan(f*x+e))^n)^p,x, algorithm="fricas")

[Out]

integral(((c*tan(f*x + e))^n*b)^p*cot(f*x + e)^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \left (c \tan{\left (e + f x \right )}\right )^{n}\right )^{p} \cot ^{2}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**2*(b*(c*tan(f*x+e))**n)**p,x)

[Out]

Integral((b*(c*tan(e + f*x))**n)**p*cot(e + f*x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (\left (c \tan \left (f x + e\right )\right )^{n} b\right )^{p} \cot \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(b*(c*tan(f*x+e))^n)^p,x, algorithm="giac")

[Out]

integrate(((c*tan(f*x + e))^n*b)^p*cot(f*x + e)^2, x)